be the function whose first or second derivatives at x = a
are desired.
Method | Formula | Error | |||
---|---|---|---|---|---|
Forward difference | f'(a)=\frac{f(a+h)-f(a}{h} | \frac{-1}{2}h f^{(2)}(\varphi) | |||
Central difference | f'(a)= \frac{f(a+h)-f(a -h)}{2h} | \frac {-h^2}{6} f^{(3)}(\varphi) | |||
Four point | f'(a)=\frac{-3f(a+4f(a+h)-f(a+2h)}{2h} | $$ | $$ \frac{h^2}{3} f^2(\varphi) | ||
Five point | f'(a)=\frac{[f(a -2h)-8f(a-h)+8f(a+h)-f(a + 2h)]}{12h} | f''(a)= \frac{f(a) - 2 f(a +h) + f(a +2h}{h^2} | \frac{h^2}{6}f^{iv}(\varphi) - hf''' (\nu) \\ | f''(a)=\frac{f(a-h)-2f(a)+f(a +h)}{h^2} | \frac{-h^2}{12}f^{iv}(\varphi), |\varphi-a|<|a| |
Getting sick of adjusting Latex plugin to work with blogger.
Visit the alternate site
http://optimal-learning-systems.org/wp/?p=136
No comments:
Post a Comment